
1. CITP CAEX Layer Specification

1.1 History
Date Version Brief info
2013-06-15 PA1 First prerelease of A draft 1, featuring Live View and Cue Recording messages.
2013-07-13 PA2 Added reply message clarification to the GetLiveViewImage message.
2013-08-03 PA3 Removed trailing copy & paste remark for the RecordCue message.
2013-10-15 PA4 Added new Cue Recording messages for clearing.
2013-11-09 A Accepted as version A with the release of Capture Polar 2.11.
2014-10-23 PB1 Added new Show Synchronization messages.
2015-01-21 PB2 Polished Show Synchronization messages.
2015-05-07 B Accepted as version B with the release of Capture Argo 21.0.
2015-10-25 PC1 First prerelease of C draft 1, featuring laser feeds.
2015-11-02 PC2 Changed laser feed frames to be sent over UDP and added data packing.
2015-11-06 C Accepted as version C with the release of Capture Argo 21.1.20.
2017-05-15 PD1 Added the FixtureIdentify message.
2017-06-05 D Accepted as version D with the release of Capture Nexum 23.1.
2018-07-27 E Clarifications with regard to the guid type and format of anglular information.

Types of RDM identification clarified and extended.

1.2 Introduction
The CITP/CAEX "Capture Extensions" layer is a set of networking messages implemented as a private CITP (http://www.citp-
protocol.org) layer. This document could be interpreted as an addendum to the CITP protocol specification.

1.3 Data types
The following data types are used in CITP/CAEX, in addition to those defined in CITP.

guid // 128-bit UUID encoded using Microsoft COM/OLE mixed-endian format.
 // "00112233-4455-6677-8899-aabbccddeeff" is encoded as
 // the bytes "33 22 11 00 55 44 77 66 88 99 aa bb cc dd ee ff".

2. Header and NACK message
Most messages in CAEX are of request/reply nature, although some messages may be sent unsoliticed. Capture will honor the
CITP header RequestIndex and InResponseTo fields if they are set, allowing the peer to correlate replies to responses.

2.1 The CAEX header
The CAEX layer provides a standard, single, header used at the start of all CAEX packets:

CITP_CAEX_Header
{
 CITP_Header CITPHeader // CITP header. CITP ContentType is "CAEX".
 uint32 ContentCode // Number identifying which CAEX message it is.
}

Unlike other CITP messages, CAEX doesn't use ASCII-form 32-bit integers to identify messages, but rather standard numeric
32-bit integers.

2.2 CAEX / NACK message
This message must be sent by Capture or a peer in response to any unknown message or any request that prompts a reply
which cannot be served. The CITP header RequestIndex and InResponseTo fields must be honored when sending this
message.

CITP_CAEX_NACK
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0xFFFFFFFF.
 uint8 Reason // 0x00 = Unknown request.
 // 0x01 = Incorrect or malformed request.
 // 0x02 = Internal error.
 // 0x03 = Request refused.
}

3. Live View messages
Capture allows a peer to interact with one of its views in live mode. If no view is in live mode, these features will not be available.
If multiple views are in live mode, the first view in live mode will be the one with which the peer can interact.

3.1 CAEX / GetLiveViewStatus message
This message is sent to Capture as a request for a LiveViewStatus reply.

CITP_CAEX_GetLiveViewStatus
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00000100.
}

3.2 CAEX / LiveViewStatus message
This message is sent by Capture in reply to a GetLiveViewStatus message.

CITP_CAEX_LiveViewStatus
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00000101.
 uint8 Availability // 0x00 = Not available.
 // 0x01 = Alpha view available.
 // 0x02 = Beta view available.
 // 0x03 = Gamma view available.
 uint16[2] Size // The width and height of the view.
 float[3] CameraPosition // The XYZ position of the camera.
 float[3] CameraFocus // The XYZ focus of the camera.
}

Note: The purpose of sending the camera position and focus is so that the peer can use this as default when requesting live
images.

3.3 CAEX / GetLiveViewImage message
This message is sent to Capture as a request for a LiveViewImage reply.

CITP_CAEX_GetLiveViewImage
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00000200.
 uint8 Format // 0x01 = JPEG
 uint16[2] Resolution // The width and height requested.
 float[3] CameraPosition // The position of the camera, as XYZ.
 float[3] CameraFocus // The focus of the camera, as XYZ.
}

Note: If the peer requests a resolution higher than the current size of the view, Capture will return an image with the current size
of the view. If no live view is available, Capture will reply with a 'Refused' NACK.

3.4 CAEX / LiveViewImage message
This message is sent by Capture in reply to a GetLiveViewImage message.

CITP_CAEX_LiveViewImage
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00000201.
 uint8 Format // 0x01 = JPEG
 uint32 DataSize // The number of bytes in the following field.
 uint8[DataSize] Data // Image data.
}

4. Cue Recording messages
Capture allows a peer with cue recording capabilities to expose some amount of remote control of its 'recording unit' /
'programmer'.

4.1 CAEX / SetCueRecordingCapabilities message
This message is sent to Capture in order to enable or disable remote cue recording.

CITP_CAEX_SetCueRecordingCapabilities
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00010100.
 uint8 Availability // 0x00 = Not available
 // 0x01 = Available
 uint8 OptionCount // The number of options that follow.
 {
 ucs2 Name // The name of the option.
 ucs2 Choices // Tab ('\t') separated list of choices.
 ucs2 Help // An optional explanation/description.
 }[OptionCount]
}

Note: The abscence of choices for an option denotes a free text field.

4.2 CAEX / RecordCue message
This message is sent unsolicited by Capture when the user records a cue.

CITP_CAEX_RecordCue
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00010200.
 uint8 OptionCount // The number of options that follow.
 {
 ucs2 Name // The name of the option.
 ucs2 Value // Value of the option.
 }[OptionCount]
}

4.3 CAEX / SetRecorderClearingCapabilities message
This message is sent to Capture in order to enable or disable remote clearing of the recorder.

CITP_CAEX_SetRecorderClearingCapabilities
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00010300.
 uint8 Availability // 0x00 = Unsupported (default state)
 // 0x01 = Currently unavailable
 // 0x02 = Available
}

4.4 CAEX / ClearRecorder message
This message is sent unsolicited by Capture when the user wishes to clear the state of the recorder.

CITP_CAEX_ClearRecorder
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00010400.
}

5. Show Synchronization messages
The Show Synchronization messages allow a peer to exchange patch, selection and fixture status information with Capture.

In order for the user experience to be smooth and seamless, it is necessary to communicate "show state" information with
Capture. The following are the rules of interaction:

Capture will send EnterShow and LeaveShow messages as projects are opened and closed, given
that the user has enabled the "console link" with the peer. If "console link" is disabled and then
reenabled, Capture will act as if the project was closed and opened again. Always keep track of
whether Capture is currently in a show or not.
When opening or creating a new show: send an EnterShow message to Capture.
When opening or creating a new show and Capture is currently in a show: send a patch information
request to Capture.
When closing a show: send a LeaveShow message to Capture.
When in a show and Capture enters a show: send a patch information request to Capture.
If the user chooses to disable synchronization: act as if the user had closed the show.
If the user chooses to reenable synchronization: act as if the user had just opened the current show.

It is important that the peer, upon receving complete patch information when both the peer and Capture have entered a show,
provides the user with the means to determine whether the patch is in sync and/or requires modification, as well as the option to
disable the synchronization.

5.1 CAEX / EnterShow message
This message is sent unsolicited by both Capture and the peer when a show/project is opened and/or the user wishes to enable
show synchronization.

CITP_CAEX_EnterShow
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020100.
 ucs2 Name // The name of the show.
}

5.2 CAEX / LeaveShow message
This message is sent unsolicited by both Capture and the peer when a show/project is closed or when the user wishes to
disable show synchronization.

CITP_CAEX_LeaveShow
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020101.
}

5.3 CAEX / FixtureListRequest message
This message can be sent unsolicited by Capture or a peer in order to acquire the full patch list from the other side. The
expected response is a FixtureList message with Type = 0x00.

CITP_CAEX_FixtureListRequest
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020200.
}

5.4 CAEX / FixtureList message
This message is sent in response to a FixtureListRequest message (with Type = 0x00) as well as unsolicited by both Capture
and the peer (with Type = 0x01 or Type = 0x02). An existing patch fixture list (Type = 0x00) must contain all known fixtures while
a new fixture (Type = 0x01) or exchanged fixture (Type = 0x02) message contains only the fixture(s) that were recently added or
exchanged for other fixtures.

CITP_CAEX_FixtureList
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020201.
 uint8 Type // 0x00 = Existing patch list
 // 0x01 = New fixture(s)
 // 0x02 = Exchanged fixture(s)
 uint16 FixtureCount // Number of fixtures following.
 {
 uint32 FixtureIdentifer // Console's fixture identifier.
 // Set to 0xffffffff if unknown by Capture.
 ucs2 ManufacturerName // The name of the fixture's manufacturer.
 ucs2 FixtureName // The model name of the fixture.
 ucs2 ModeName // The name of DMX mode.
 uint16 ChannelCount // The number of channels of the DMX mode.
 uint8 IsDimmer // A boolean 0x00 or 0x01 indicating whether it's.

 // a dimmer (only) fixture or not.
 uint8 IdentifierCount // The number of following identifier blocks.
 {
 uint8 IdentifierType // 0x05 = RDMManufacturerId (uint16)
 // 0x00 = RDMDeviceModelId (uint16)
 // 0x01 = RDMPersonalityId (uint64 - see note!)
 // 0x02 = AtlaBaseFixtureId (guid)
 // 0x03 = AtlaBaseModeId (guid)
 // 0x04 = CaptureInstanceId (guid)
 uint16 IdentifierDataSize // The size of the data following.
 uint8[] IdentifierData // Identifier type specific data.
 }[IdentifierCount]
 uint8 Patched // A boolean 0x00 or 0x01 indicating whether the
 // the fixture is patched or not.
 uint8 Universe // The (0-based) universe index.
 uint16 UniverseChannel // The (0-based) DMX channel.
 ucs2 Unit // The unit number.
 uint16 Channel // The channel number.
 ucs2 Circuit // The circuit number.
 ucs2 Note // Any notes.
 float[3] Position // The 3D position.
 float[3] Angles // The 3D angle.
 }[FixtureCount]
}

Note: The RDMPersonalityId IdentifierType is incorrectly uint64 when it should have been uint16. As a result of this, the highest
six bytes should be set to zero.

Note: The 3D coordinate system is right-handed with Z being downstage and Y up. Angles are Euler angles in radians, Tait-
Bryan X1 Y2 Z3 order.

5.5 CAEX / FixtureIdentify message
This message can be sent to Capture in order to set the fixture identifier of a fixture based on its instance id (the 0x04 identifier
type of the FixtureList message). This is only required in the specific scenario of a fixture being added in Capture and then
patched on the console. The console can then respond to the addition of the fixture with a FixtureIdentify message before it
sends the FixtureModify message (which relies on the identifier having been set).

CITP_CAEX_FixtureIdentify
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020204.
 uint16 FixtureCount // The number of fixture identifications following.
 {
 guid CaptureInstanceId // The instance id of the fixture.
 uint32 FixtureIdentifier // The fixture identifier to set.
 }[FixtureCount]
}

5.6 CAEX / FixtureModify message
This message is sent unsolicited by both Capture and the peer whenever a fixture has been modified. All fields must always be
present, but it is important that the ChangedFields field indicates which have actually been modified.

CITP_CAEX_FixtureModify
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020202.
 uint16 FixtureCount // The number of fixtures following.
 {
 uint32 FixtureIdentifier // Console's fixture identifier.
 uint8 ChangedFields // Bitmask indicating which of the following fields have changed.
 uint8 Patched // As in FixtureList. (ChangedFields & 0x01).
 uint8 Universe // As in FixtureList. (ChangedFields & 0x01).
 uint16 UniverseChannel // As in FixtureList. (ChangedFields & 0x01).
 ucs2 Unit // As in FixtureList. (ChangedFields & 0x02).
 uint16 Channel // As in FixtureList. (ChangedFields & 0x04).
 ucs2 Circuit // As in FixtureList. (ChangedFields & 0x08).
 ucs2 Note // As in FixtureList. (ChangedFields & 0x10).
 float[3] Position // As in FixtureList. (ChangedFields & 0x20).
 float[3] Angles // As in FixtureList. (ChangedFields & 0x20).
 }[FixtureCount]
}

5.7 CAEX / FixtureRemove message
This message is sent unsolicited by both Capture and the peer whenever on or more fixture(s) have been removed.

CITP_CAEX_FixtureRemove
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020203.
 uint16 FixtureCount // The number of fixture identifiers following.

 uint32[FixtureCount] FixtureIdentifier // Console's fixture identifiers.
}

5.8 CAEX / FixtureSelection message
This message is sent unsolicited by by both Capture and the peer to inform the other side of a new fixture selection. Note that
the order of the fixture identifiers should carry the order in which the fixture(s) were selected.

CITP_CAEX_FixtureSelection
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020300.
 uint16 FixtureCount // The number of fixture identifiers following.
 uint32[FixtureCount] FixtureIdentifier // Console's fixture identifiers.
}

5.9 CAEX / FixtureConsoleStatus message
This message is sent unsolicited by the peer to Capture in order to convey "live information" data that can be displayed by
Capture.

CITP_CAEX_FixtureConsoleStatus
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00020400.
 uint16 FixtureCount // The number of fixtures following.
 {
 uint32 FixtureIdentifier // Console's fixture identifiers.
 uint8 Locked // The fixture has been locked from manipulation.
 uint8 Clearable // The fixture has a clearable programmer state.
 }[FixtureCount]
}

6. Laser feed messages
A peer may serve laser feeds to Capture. Information to Capture about which feeds are available and information from Capture
about which feeds to transmit is sent over the TCP based CITP session. Actual feed frame data is transmitted to the UDP based
CITP multicast address.

In order for Capture to be able to correlate the feed frames with the appropriate session, a process instance unique and random
"source key" is to be generated by the laser controller.

6.1 CAEX / GetLaserFeedList message
This message is sent by Capture upon connection to determine what laser feeds are available. Receving this message is an
indication of Capture's ability to understand CAEX laser feeds.

CITP_CAEX_GetLaserFeedList
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00030100.
}

6.2 CAEX / LaserFeedList message
This message can be sent to Capture both in response to a GetLaserFeedList message as well as unsolicited if the list of
available laser feeds has changed.

CITP_CAEX_LaserFeedList
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00030101.
 uint32 SourceKey // The source key used in frame messages.
 uint8 FeedCount // The number of laser feed listings that follow.
 {
 ucs2 Name // The name of the feed.
 }[FeedCount]
}

6.3 CAEX / LaserFeedControl message
This message is sent by Capture to indicate whether it wishes a laser feed to be transmitted or not. The frame rate can be seen
as an indication of the maximum frame rate meaningful to Capture.

CITP_CAEX_LaserFeedControl
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00030102.
 uint8 FeedIndex // The 0-based index of the feed.
 uint8 FrameRate // The frame rate requested, 0 to disable transmission.
}

6.4 CAEX / LaserFeedFrame message
This message is sent unsolicited to Capture, carrying feed frame data.

CITP_CAEX_LaserFeedFrame
{
 CITP_CAEX_Header CITPCAEXHeader // CITP CAEX header, ContentCode = 0x00030200.
 uint32 SourceKey // The source key as in the LaserFeedList message.
 uint8 FeedIndex // The 0-based index of the feed.
 uint32 FrameSequenceNo // A 0-based sequence number for out of order data detection.
 uint16 PointCount // The number of points that follow.
 {
 uint8 XLowByte // The low byte of the x coordinate.
 uint8 YLowByte // The low byte of the y coordinate.
 uint8 XYHighNibbles // The high nibbles of the x and y coordinates.
 uint16 Color // The colour packed as R5 G6 B5.
 }[PointCount]
}

Such that:
 Point.X [0, 4093] = Point.XLowByte + (Point.XYHighNibbles & 0x0f) << 8
 Point.Y [0, 4093] = Point.YLowByte + (Point.XYHighNibbles & 0xf0) << 4
 Point.R [0, 31] = Point.Color & 0x001f
 Point.G [0, 63] = (Point.Color & 0x07e0) >> 5
 Point.B [0, 31] = (Point.Color & 0xf800) >> 11

